
Linux Security
for Developers

Insights for building a (more) secure world

Michael Boelen
michael.boelen@cisofy.com
14 January 2016

https://cisofy.com
mailto:michael.boelen@cisofy.com
mailto:michael.boelen@cisofy.com


We Love Construction

Image source unknown 2



And Magic!

Turning data into:
- Useful output
- Stable software
- Nice services

Image source: renoairport.com 3





● Spying
● Internet of Things
● Law

○ 2016 Dutch Data Protection Act
○ 2017-2018 European data protection law

Why Invest in Security Now?

5



Agenda

● What can go wrong?

● What can we do?

● Strategies and Tools

6



Michael Boelen

● Open Source Security
○ Rootkit Hunter (malware scan)

○ Lynis (security scan)

● 150+ blog posts at Linux-Audit.com

● Founder of CISOfy

7

https://rootkit.nl
https://rootkit.nl
https://cisofy.com/lynis/
https://cisofy.com/lynis/
http://linux-audit.com
https://cisofy.com


What can go wrong?



Passwords

Image source unknown

9



Case: Phone House

http://sijmen.ruwhof.
net/weblog/608-personal-data-of-
dutch-telecom-providers-
extremely-poorly-protected-how-i-
could-access-12-million-records

http://sijmen.ruwhof.net/weblog/608-personal-data-of-dutch-telecom-providers-extremely-poorly-protected-how-i-could-access-12-million-records
http://sijmen.ruwhof.net/weblog/608-personal-data-of-dutch-telecom-providers-extremely-poorly-protected-how-i-could-access-12-million-records
http://sijmen.ruwhof.net/weblog/608-personal-data-of-dutch-telecom-providers-extremely-poorly-protected-how-i-could-access-12-million-records
http://sijmen.ruwhof.net/weblog/608-personal-data-of-dutch-telecom-providers-extremely-poorly-protected-how-i-could-access-12-million-records
http://sijmen.ruwhof.net/weblog/608-personal-data-of-dutch-telecom-providers-extremely-poorly-protected-how-i-could-access-12-million-records
http://sijmen.ruwhof.net/weblog/608-personal-data-of-dutch-telecom-providers-extremely-poorly-protected-how-i-could-access-12-million-records


Creative Users

Image source unknown

11





What can we do?



Solution

“Developers should become auditors of 
their creative work, and that of others.”

Michael Boelen, 14 January 2016

14



Improve in steps

● Level 1: Basics
● Level 2: Take ownership
● Level 3: Perform auditing

What can we do?

15



Level 1: The Basics



Input Validation

Validate!

● Trust nothing

● Double check

- Client = for active user
- Server = for all users

17



Input Validation

Why Validate?
Prevent data injection (SQL, RDF, OWL, SPARQL, SeRQL, RDQL, XML, 
JSON, etc.)

Where?
Input forms, data imports

18



Data Protection
Encryption:
● Good Encryption solves a lot
● Bad Knowledge required
● Ugly Easy to implement incorrectly

19



Secure Programming
Using universally unique identifier?

UUID1 = Host (MAC) + sequence + time
UUID4 = Random

20



Two-factor Authentication

Use
● GitHub

Implement
● Your apps?

21



Level 2: Take Ownership



What?
● The code
● Development systems
● Deployment
● Production

Ownership

23



Hardening

Photo Credits: http://commons.wikimedia.org/wiki/User:Wilson44691

● Add new defenses

● Improve existing defenses

● Reduce weaknesses

24



Hardening

What to harden?

● Operating System

● Software + Configuration

● Access controls

25



OS Hardening

Operating System:

● Services

● Users

● Permissions

26



Software Hardening

Software:

● Minimal installation

● Configuration

● Tuning

27



Access Hardening

Users and Access Controls:

● Who can access what

● Password policies

● Accountability

28



Data Hardening

Focus on data streams
● Network (data in transit)

● Storage (data at rest)

● Access

29



Network Hardening

Traffic flows

● Is all incoming traffic needed?

● What about outgoing?

● IPv6?

30



HTTP Hardening

Header
X-Frame-Options SAMEORIGIN
Allow only iframe targets from our own domain

X-Frame-Options DENY
Do not allow rendering in iframe

31



HTTP Hardening

Header
X-XSS-Protection 1; mode=block
Block reflective XSS, avoid returning previous input (e.g. form)

32



HTTP Hardening

Header
X-Content-Type-Options nosniff
Don't peek into server responses, consider text/html by default

33



HTTP Hardening

34

https://securityheaders.io/?q=http%3A%2F%2Flinux-audit.com


Hardening

Myth: After hardening I’m done

35



Hardening

● Security should be an ongoing process

● Which means it is never finished

● New attacks = more hardening
○ POODLE

○ Hearthbleed

36

http://en.wikipedia.org/wiki/POODLE
http://en.wikipedia.org/wiki/POODLE
http://heartbleed.com/
http://heartbleed.com/


Level 3: Perform Auditing



Myth

Auditing = 

● A lot of work!

● Booooooring!

● And.. prone to errors...

38



Fact

Well, it can be.

39



Common Strategy

1. Audit

2. Get a lot of findings

3. Start hardening

4. …….

5. Quit
40



Strategy (New)

1. Focus

2. Audit

3. Focus

4. Harden

5. Repeat!
41



1. Focus

● Determine what to scan

● Limit scope of systems / applications

42



2. Audit

● Start small

● Collect data

43



3. Focus

Determine hardening focus

● Impact

● Number

● Area (e.g. crypto)

44



4. Harden

● Create implementation plan

● Perform lock down

● Document
○ What, Why, How

○ Exceptions

45



5. Repeat

● Keep measuring your actions

● Again:
○ Ongoing process

○ Never finishes

○ New attacks

46



Questions?



Tools

Options:
1. Guides
2. Utilities

48



Benchmarks / Guides

● Center for Internet Security (CIS)

● NIST / NSA

● OWASP

● Vendors

49



Benchmarks / Guides

Pros
Free to use
Detailed
You are in control

50

Cons
Time intensive
Usually no tooling
Limited distributions
Delayed releases



OWASP

Open Web Application Security Project

51



OWASP

Security Knowledge Framework

52



OWASP

Link 
53

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project


OWASP

54



Tools



Tools

Tools make life easier, right?

Not always...

56



Tools

Problem 1: There aren’t many

57



Tools

Problem 2: Usually outdated

58



Tools

Problem 3: Limited support

59



Tools

Problem 4: Hard to use

60



Introducing Lynis



Lynis

Free
Open source
Shell
Simple
Flexible
Portable

62



Lynis

Background
● Since 2007
● GPLv3
● Requirements

○ Flexible
○ Portable

63



Lynis

Goals
● Perform a quick security scan
● Collect data
● Define next hardening steps

64



Lynis

Simple
● No installation needed
● Run with just one parameter
● No configuration needed

65



Lynis

Flexibility
● No dependencies*
● Option to extend easily
● Custom tests

* Besides common tools like awk, grep, ps

66



How it works

1. Initialise

2. OS detection

3. Detect binaries

4. Run helpers/plugins/tests

5. Show report
67



Bonus: Integration

● Deployment cycle
● Create your own tests: 

include/tests_custom

68



Running

1. lynis

2. lynis audit system

3. lynis audit system --quick

4. lynis audit system --quick --quiet

69



Auditing Code



Code Validation

Quick wins
● Python: Pylint
● Ruby: ruby-lint
● Shell: shlint

71



Code Validation

Professional services
● Pentesting
● Code reviews

72



Auditing Repositories



● Secret keys
● Passwords
● Unique IDs
● Customers

Sensitive Data

74

http://blog.arvidandersson.se/2013/06/10/credentials-in-git-repos
http://blog.nortal.com/mining-passwords-github-repositories/

http://blog.arvidandersson.se/2013/06/10/credentials-in-git-repos
http://blog.arvidandersson.se/2013/06/10/credentials-in-git-repos
http://blog.nortal.com/mining-passwords-github-repositories/
http://blog.nortal.com/mining-passwords-github-repositories/


Search your GitHub repos:
extension:conf password
extension:pem private
filename:.bashrc
filename:.ssh
language:ruby secret
language:python password

Sensitive Data

75



Hardening

Harden:
● Your systems
● Your code
● Your sensitive data

76



Latest Developments



Developments

● Data protection laws

● OWASP

● New Rails security HTTP headers

● Internet of Things

● DevOps→SecDevOps / DevOpsSec
78



Conclusions



Lesson 1: Continuous Auditing

Many small efforts =
Big impact!

80



Lesson 2: Implement Lynis

#include lynis.sh

81



Lesson 3: Leverage Security

Security
● Less: Crisis and Leaks
● More: Development Time

82



You Finished This Presentation

Success!



Follow Me

● Twitter: @mboelen

● Personal website: michaelboelen.com

● Blog: linux-audit.com

84

Want More?

https://twitter.com/mboelen/
http://michaelboelen.com
http://linux-audit.com


85

http://blog.nortal.com/mining-passwords-github-repositories/

