
Linux Security
for Developers

Insights for building a (more) secure world

Michael Boelen
michael.boelen@cisofy.com
14 January 2016

https://cisofy.com
mailto:michael.boelen@cisofy.com
mailto:michael.boelen@cisofy.com


We Love Construction
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And Magic!

Turning data into:
- Useful output
- Stable software
- Nice services
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● Spying
● Internet of Things
● Law

○ 2016 Dutch Data Protection Act
○ 2017-2018 European data protection law

Why Invest in Security Now?
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Agenda

● What can go wrong?

● What can we do?

● Strategies and Tools
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Michael Boelen

● Open Source Security
○ Rootkit Hunter (malware scan)

○ Lynis (security scan)

● 150+ blog posts at Linux-Audit.com

● Founder of CISOfy
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https://rootkit.nl
https://rootkit.nl
https://cisofy.com/lynis/
https://cisofy.com/lynis/
http://linux-audit.com
https://cisofy.com


What can go wrong?



Passwords
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Case: Phone House

http://sijmen.ruwhof.
net/weblog/608-personal-data-of-
dutch-telecom-providers-
extremely-poorly-protected-how-i-
could-access-12-million-records
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Creative Users
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What can we do?



Solution

“Developers should become auditors of 
their creative work, and that of others.”

Michael Boelen, 14 January 2016
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Improve in steps

● Level 1: Basics
● Level 2: Take ownership
● Level 3: Perform auditing

What can we do?

15



Level 1: The Basics



Input Validation

Validate!

● Trust nothing

● Double check

- Client = for active user
- Server = for all users
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Input Validation

Why Validate?
Prevent data injection (SQL, RDF, OWL, SPARQL, SeRQL, RDQL, XML, 
JSON, etc.)

Where?
Input forms, data imports
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Data Protection
Encryption:
● Good Encryption solves a lot
● Bad Knowledge required
● Ugly Easy to implement incorrectly
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Secure Programming
Using universally unique identifier?

UUID1 = Host (MAC) + sequence + time
UUID4 = Random
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Two-factor Authentication

Use
● GitHub

Implement
● Your apps?
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Level 2: Take Ownership



What?
● The code
● Development systems
● Deployment
● Production

Ownership
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Hardening

Photo Credits: http://commons.wikimedia.org/wiki/User:Wilson44691

● Add new defenses

● Improve existing defenses

● Reduce weaknesses
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Hardening

What to harden?

● Operating System

● Software + Configuration

● Access controls
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OS Hardening

Operating System:

● Services

● Users

● Permissions
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Software Hardening

Software:

● Minimal installation

● Configuration

● Tuning
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Access Hardening

Users and Access Controls:

● Who can access what

● Password policies

● Accountability
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Data Hardening

Focus on data streams
● Network (data in transit)

● Storage (data at rest)

● Access
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Network Hardening

Traffic flows

● Is all incoming traffic needed?

● What about outgoing?

● IPv6?
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HTTP Hardening

Header
X-Frame-Options SAMEORIGIN
Allow only iframe targets from our own domain

X-Frame-Options DENY
Do not allow rendering in iframe
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HTTP Hardening

Header
X-XSS-Protection 1; mode=block
Block reflective XSS, avoid returning previous input (e.g. form)
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HTTP Hardening

Header
X-Content-Type-Options nosniff
Don't peek into server responses, consider text/html by default
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HTTP Hardening
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https://securityheaders.io/?q=http%3A%2F%2Flinux-audit.com


Hardening

Myth: After hardening I’m done
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Hardening

● Security should be an ongoing process

● Which means it is never finished

● New attacks = more hardening
○ POODLE

○ Hearthbleed
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http://en.wikipedia.org/wiki/POODLE
http://en.wikipedia.org/wiki/POODLE
http://heartbleed.com/
http://heartbleed.com/


Level 3: Perform Auditing



Myth

Auditing = 

● A lot of work!

● Booooooring!

● And.. prone to errors...
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Fact

Well, it can be.
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Common Strategy

1. Audit

2. Get a lot of findings

3. Start hardening

4. …….

5. Quit
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Strategy (New)

1. Focus

2. Audit

3. Focus

4. Harden

5. Repeat!
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1. Focus

● Determine what to scan

● Limit scope of systems / applications
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2. Audit

● Start small

● Collect data
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3. Focus

Determine hardening focus

● Impact

● Number

● Area (e.g. crypto)
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4. Harden

● Create implementation plan

● Perform lock down

● Document
○ What, Why, How

○ Exceptions
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5. Repeat

● Keep measuring your actions

● Again:
○ Ongoing process

○ Never finishes

○ New attacks
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Questions?



Tools

Options:
1. Guides
2. Utilities
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Benchmarks / Guides

● Center for Internet Security (CIS)

● NIST / NSA

● OWASP

● Vendors
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Benchmarks / Guides

Pros
Free to use
Detailed
You are in control
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Cons
Time intensive
Usually no tooling
Limited distributions
Delayed releases



OWASP

Open Web Application Security Project
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OWASP

Security Knowledge Framework
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OWASP

Link 
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https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project


OWASP
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Tools



Tools

Tools make life easier, right?

Not always...
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Tools

Problem 1: There aren’t many
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Tools

Problem 2: Usually outdated
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Tools

Problem 3: Limited support

59



Tools

Problem 4: Hard to use

60



Introducing Lynis



Lynis

Free
Open source
Shell
Simple
Flexible
Portable
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Lynis

Background
● Since 2007
● GPLv3
● Requirements

○ Flexible
○ Portable
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Lynis

Goals
● Perform a quick security scan
● Collect data
● Define next hardening steps
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Lynis

Simple
● No installation needed
● Run with just one parameter
● No configuration needed
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Lynis

Flexibility
● No dependencies*
● Option to extend easily
● Custom tests

* Besides common tools like awk, grep, ps
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How it works

1. Initialise

2. OS detection

3. Detect binaries

4. Run helpers/plugins/tests

5. Show report
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Bonus: Integration

● Deployment cycle
● Create your own tests: 

include/tests_custom
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Running

1. lynis

2. lynis audit system

3. lynis audit system --quick

4. lynis audit system --quick --quiet
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Auditing Code



Code Validation

Quick wins
● Python: Pylint
● Ruby: ruby-lint
● Shell: shlint
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Code Validation

Professional services
● Pentesting
● Code reviews
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Auditing Repositories



● Secret keys
● Passwords
● Unique IDs
● Customers

Sensitive Data

74

http://blog.arvidandersson.se/2013/06/10/credentials-in-git-repos
http://blog.nortal.com/mining-passwords-github-repositories/
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Search your GitHub repos:
extension:conf password
extension:pem private
filename:.bashrc
filename:.ssh
language:ruby secret
language:python password

Sensitive Data
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Hardening

Harden:
● Your systems
● Your code
● Your sensitive data
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Latest Developments



Developments

● Data protection laws

● OWASP

● New Rails security HTTP headers

● Internet of Things

● DevOps→SecDevOps / DevOpsSec
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Conclusions



Lesson 1: Continuous Auditing

Many small efforts =
Big impact!
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Lesson 2: Implement Lynis

#include lynis.sh
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Lesson 3: Leverage Security

Security
● Less: Crisis and Leaks
● More: Development Time
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You Finished This Presentation

Success!



Follow Me

● Twitter: @mboelen

● Personal website: michaelboelen.com

● Blog: linux-audit.com
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Want More?

https://twitter.com/mboelen/
http://michaelboelen.com
http://linux-audit.com
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http://blog.nortal.com/mining-passwords-github-repositories/

